前 言
陶瓷材料耐溫能力高、力學(xué)性能好、密度低,很早就被認(rèn)為是發(fā)動(dòng)機(jī)高溫結(jié)構(gòu)的理想材料,但由于陶瓷韌性差,一旦損壞會(huì)引起發(fā)動(dòng)機(jī)災(zāi)難性后果,因而限制了其應(yīng)用。為提高陶瓷材料的韌性,材料學(xué)家經(jīng)過不懈努力發(fā)展出陶瓷基復(fù)合材料。
陶瓷基復(fù)合材料是指在陶瓷基體中引入增強(qiáng)材料,形成以引入的增強(qiáng)材料為分散相,以陶瓷基體為連續(xù)相的復(fù)合材料,它具有耐高溫、耐磨、抗高溫蠕變、熱導(dǎo)率低、熱膨脹系數(shù)低、耐化學(xué)腐蝕、強(qiáng)度高、硬度大及介電、透波等特點(diǎn),在航空、航天等眾多領(lǐng)域有著廣泛的應(yīng)用。
陶瓷基復(fù)合材料的分類
陶瓷基復(fù)合材料,根據(jù)增強(qiáng)體分成兩大類:連續(xù)增強(qiáng)的復(fù)合材料和不連續(xù)增強(qiáng)的復(fù)合材料。其中,連續(xù)增強(qiáng)的復(fù)合材料包括一方向,二方向和三方向纖維增強(qiáng)的復(fù)合材料,也包括多層陶瓷復(fù)合材料;不連續(xù)增強(qiáng)的復(fù)合材料包括晶須、晶片和顆粒的第二組元增強(qiáng)體和自身增強(qiáng)體。
陶瓷基復(fù)合材料也可以根據(jù)基體分成氧化物基和非氧化物基復(fù)合材料。氧化物基復(fù)合材料包括玻璃、玻璃陶瓷、氧化物、復(fù)合氧化物等,弱增強(qiáng)纖維也是氧化物,常稱為全氧化物復(fù)合材料。非氧化物基復(fù)合材料以SiC、Si3N4、MoS2基為主。
陶瓷基復(fù)合材料的制備
化學(xué)氣相滲透法
化學(xué)氣相滲透法的工藝流程主要為:將先驅(qū)體和載體按照特定比例通入沉積室中,通過氣體擴(kuò)散作用或由壓力差產(chǎn)生的定向流動(dòng)將氣態(tài)先驅(qū)體擴(kuò)散至纖維預(yù)制體內(nèi)部,進(jìn)而在纖維表面裂解和沉積,實(shí)現(xiàn)纖維預(yù)制體的致密化。該工藝的優(yōu)點(diǎn)是制備過程中纖維損傷較小,制備的陶瓷基體純度高、晶型完整,復(fù)合材料的力學(xué)性能較高,但是制備工藝較為復(fù)雜、成本高、周期長、制備的復(fù)合材料孔隙率高。
聚合物浸漬裂解法
聚合物浸漬裂解法以聚合物液相先驅(qū)體(或溶液)為浸漬劑,通過多循環(huán)交聯(lián)固化、高溫裂解,獲得致密化的復(fù)合材料。該工藝的優(yōu)點(diǎn)是處理溫度低,近凈成型,能夠制備復(fù)雜大尺寸構(gòu)件,其缺點(diǎn)是陶瓷收率低、制造周期長、材料孔隙率高。
漿料浸漬熱壓法
漿料浸漬熱壓法的工藝流程為:首先將陶瓷纖維浸漬于含有陶瓷基體的漿料中,將表面涂覆漿料的纖維纏繞至滾筒,進(jìn)而制成無緯布,經(jīng)切片、疊加、熱模壓成型和熱壓燒結(jié)后,獲得致密化的復(fù)合材料。該工藝簡單,成本較低。但熱壓工藝容易使纖維造成損傷,降低了復(fù)合材料的力學(xué)性能;此外,該工藝用于制備一維或二維復(fù)合材料,難以制備大型陶瓷基復(fù)合材料構(gòu)件。
熔體浸漬工藝
熔體浸漬法的基本原理為將金屬或合金加熱到熔融液態(tài),然后在一定的工藝條件下滲透至纖維預(yù)制體內(nèi)部,進(jìn)而發(fā)生反應(yīng)生成陶瓷基體。該工藝最大的優(yōu)點(diǎn)為能夠通過一次成型制備致密且基本無缺陷的基體,而且預(yù)成型件與構(gòu)件之間結(jié)構(gòu)尺寸較小,被認(rèn)為是快速、低成本制備近凈成型復(fù)雜形狀構(gòu)件的有效途徑。其缺點(diǎn)在于處理溫度較高,制備過程中殘留一定體積的金屬,影響復(fù)合材料的性能。
陶瓷基復(fù)合材料的增韌技術(shù)
纖維增韌
纖維增韌要求盡量滿足纖維與基體陶瓷的化學(xué)相容性和物理相容性。纖維增強(qiáng)陶瓷基復(fù)合材料的增韌機(jī)制包括基體預(yù)壓縮應(yīng)力、裂紋擴(kuò)展受阻、纖維拔出、纖維橋聯(lián)、裂紋偏轉(zhuǎn)、相變增韌等。目前能用于增強(qiáng)陶瓷基復(fù)合材料的纖維種類較多,包括氧化鋁系列(包括莫來石)、碳化硅系列、氮化硅系列、碳纖維等,除了上述系列纖維外,現(xiàn)在正在研發(fā)的還有BN、TiC、B4C等復(fù)相纖維。
晶須增韌
陶瓷晶須是具有一定長徑比且缺陷很少的陶瓷小單晶,它有很高的強(qiáng)度,是一種非常理想的陶瓷基復(fù)合材料的增韌增強(qiáng)體。晶須增韌陶瓷基復(fù)合材料的主要增韌機(jī)制包括晶須拔出、裂紋偏轉(zhuǎn)、晶須橋聯(lián)。目前常用的陶瓷晶須有SiC晶須和Al2O3晶須;基體常用的有ZrO2、Si3N4、SiO2、Al2O3和莫來石等。
顆粒增韌
利用顆粒作為增韌劑,制備顆粒增韌陶瓷基復(fù)合材料,其原料的均勻分散及燒結(jié)致密化都比短纖維及晶須復(fù)合材料簡便易行。因此,盡管顆粒的增韌效果不如晶須與纖維的效果好,但如顆粒種類、粒徑、含量及基體材料選擇得當(dāng),仍有一定的韌化效果,同時(shí)會(huì)帶來高溫強(qiáng)度、高溫蠕變性能的改善。顆粒增韌按增韌機(jī)理可分為非相變第二相顆粒增韌、延性顆粒增韌、納米顆粒增韌。
相變增韌
相變增韌ZrO2陶瓷是一種極有發(fā)展前途的新型結(jié)構(gòu)陶瓷,其主要是利用ZrO2相變特性來提高陶瓷材料的斷裂韌性和抗彎強(qiáng)度,使其具有優(yōu)良的力學(xué)性能,低的導(dǎo)熱系數(shù)和良好的抗熱震性。它還可以用來顯著提高脆性材料的韌性和強(qiáng)度,是復(fù)合材料和復(fù)合陶瓷中重要的增韌劑。
納米復(fù)合陶瓷增韌
納米陶瓷由于晶粒的細(xì)化,晶界數(shù)量會(huì)極大增加(納米陶瓷的氣孔和缺陷尺寸減小到一定尺寸就不會(huì)影響材料的宏觀強(qiáng)度),可使材料的強(qiáng)度、韌性顯著增加。納米相在復(fù)合陶瓷中以兩種形式存在,一種是分布在微米級(jí)陶瓷晶粒之間的晶間納米相;另一種則“嵌入”基質(zhì)晶粒內(nèi)部,被稱為晶內(nèi)納米相或“內(nèi)晶型”結(jié)構(gòu)。兩種結(jié)構(gòu)共同作用產(chǎn)生了兩個(gè)顯著的效應(yīng):穿晶斷裂和多重界面,從而對材料的力學(xué)性能起到重要的影響。
自增韌陶瓷
如果在陶瓷基體中引入第二相材料,該相不是事先單獨(dú)制備的,而是在原料中加入可以生成第二相的原料,然后控制生成條件和反應(yīng)過程,直接通過高溫化學(xué)反應(yīng)或者相變過程,在主晶相基體中生長出均勻分布的晶須、高長徑比的晶粒或晶片的增強(qiáng)體,形成陶瓷復(fù)合材料,這稱為自增韌。這樣可以避免兩相不相容、分布不均勻的問題,其強(qiáng)度和韌性都比外來第二相增韌的同種材料高。自增韌陶瓷的增韌機(jī)理類似于晶須對材料的增韌機(jī)理,有裂紋的橋接增韌、裂紋的偏轉(zhuǎn)和晶粒的拔出,其中橋接增韌是主要的增韌機(jī)理。
參考資料:
----------------------------------------------------------------------------------------------------------------------------------------
康永、豆高雅.陶瓷基復(fù)合材料研究現(xiàn)狀和應(yīng)用前景
焦健、陳明偉.新一代發(fā)動(dòng)機(jī)高溫材料——陶瓷基復(fù)合材料的制備、性能及應(yīng)用
蔣永彪.淺談陶瓷基復(fù)合材料的分類及性能特點(diǎn)
李進(jìn)衛(wèi).淺說陶瓷基復(fù)合材料的功用特點(diǎn)及其市場前景
聲 明:文章內(nèi)容轉(zhuǎn)載自粉體網(wǎng),僅作分享,不代表本公司立場,如有侵權(quán),請聯(lián)系刪除,謝謝!
關(guān)鍵詞:復(fù)合材料熱工裝備 化學(xué)氣相沉積裝備